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Single microwave pulses centered at 9.68 GHz with 100-MHz !full width at half maximum" bandwidth are
used to evanescently tunnel through a one-dimensional photonic crystal. In a direct time-domain measurement,
it is observed that the peak of the tunneling wave packets arrives (440!20) ps earlier than the companion free
space !air" wave packets. Despite this superluminal behavior, Einstein causality is not violated since the earliest
parts of the signal, also known as the Sommerfeld forerunner, remain exactly luminal. The frequency of
oscillations and the functional form of the Sommerfeld forerunner for any causal medium are derived.

PACS number!s": 42.25.Bs, 03.65.Bz, 73.40.Gk, 42.25."p

I. INTRODUCTION

In their authoritative work, Sommerfeld and Brillouin #1$
considered the problem of electromagnetic wave propagation
in a dispersive medium. In part, this study was intended to
explain the abnormal behavior of the group velocity in the
regions of anomalous dispersion since at the time it was
known that for these frequency ranges the group velocity
exceeds the speed of light in vacuum !or is ‘‘superluminal’’".
Considering the propagation of a sinusoidally modulated step
function through a Lorentzian medium, their delineation of
the concept of wave velocity into such terms as phase, group,
energy, and forerunner !both Sommerfeld and Brillouin fore-
runners" continues to be the standard description today. !To
be complete one has to add the term ‘‘signal velocity’’ de-
fined as the velocity of the half maximum point to the list.
However, by their own admission such a definition is arbi-
trary !#1$, p. 79", and as we will see this velocity also may be
superluminal." While phase, group, and even energy veloci-
ties are discussed in many undergraduate and graduate elec-
tromagnetic books, the velocity of the forerunners has not
received much attention. !While Jackson was one of the few
authors to treat this subject in the earlier additions of his
well-respected book, ‘‘Classical Electrodynamics,’’ to our
dismay we noticed that in the latest edition #2$ this subject
has been omitted." This is of particular importance since, as
will be shown below, the Sommerfeld forerunner velocity
!also referred to as the front velocity" is the only physical
velocity which must satisfy the requirements of special rela-
tivity.
The recent interest in the subject of superluminal group

velocities was rekindled from consideration of the electron
tunneling time. Since ‘‘analogies’’ between photon and elec-
tron tunneling in particular #3,4$, and between Maxwell-
Helmholtz and the Schrödinger wave equations in general
#5$, are well established, one may hope that experimental
results from the more manageable photon tunneling experi-
ment can be used to gain some insight into the more difficult
problem of electron tunneling time.
Working in the optical regime, Chiao and co-workers #6$

used conjugate pairs of photons emitted simultaneously in
the process of spontaneous parametric downconversion, and
found the tunneling velocity for a single photon through a

one-dimensional photonic crystal !1DPC" to be superlumi-
nal. In this quantum-domain measurement, they observed su-
perluminal velocities 1.7 times greater than c. Similarly,
Spielman et al. used a Ti:sapphire laser capable of generat-
ing 10–15-fs optical pulses at %#0.8&m to study tunneling
through a 1DPC #7$. Using mirror-dispersion control and a
nonlinear background free-correlation technique, they were
able to measure advances up to 6 fs in the autocorrelated
signal.
To obtain larger advances in time, tunneling experiments

can be performed in the microwave regime. In a series of
experiments with different optical barriers such as under-
sized waveguide, misaligned horn antennas, and two side-by-
side prisms, Ranfagni et al. investigated the superluminal
tunneling for microwave frequencies #8–10$. Another series
of microwave experiments were performed by Nimtz and his
co-workers #11–16$. While they were able to improve on
Ranfagni’s original work with an undersized waveguide,
their frequency domain experiments in general and their
brief description of the 1DPC inserted inside an undersized
waveguide in particular suffer from interpretation and mea-
surement errors. The correct frequency domain measurement
procedures are described in Ref. #17$, and an attempt to cor-
rectly interpret the results, particularly in light of comments
in Refs. #18,19$, is undertaken here.
This paper is organized as follows. In Sec. II, the experi-

ment with single microwave pulses evanescently propagating
through a 1DPC is described. It is seen that a pulse tunneling
through a 1DPC arrives (440!20) ps earlier than a pulse
traveling an equivalent physical distance in free space. In
Sec. III, a proof is given that for a signal propagating a
distance x, no detection is possible for times less than t0
#x/c . Additionally, we have attempted to address the most
common misunderstandings and misinterpretations associ-
ated with the subject of superluminal group velocities. In
light of the importance of the Sommerfeld forerunner, par-
ticularly in relation to the requirements of special relativity,
the frequency of oscillation and the functional form of these
early fields for any causal medium are discussed in Sec. IV.
Section V contains the conclusions and our summary.

II. EXPERIMENTAL RESULTS

The considerable difficulties associated with defining a
unique tunneling time have been well documented #20,21$.
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However, regardless of the various definitions of tunneling
time, one can, to use a phrase from Chiao #21$, propose an
‘‘operational’’ definition of the time of flight. This idea is
depicted in Fig. 1.
When the wave peak reaches the point x1 , we start our

stop watch (t1). Some time later (t2), the wave maximum
reaches the point x2 . The ‘‘operational’’ time of flight is
then given by t2"t1 . In a more elegant version of the same
idea, the stop watch is replaced with a companion pulse that
travels the same distance (x2"x1) in vacuum. In this man-
ner, the time of flight for a pulse traversing a medium !here
a 1DPC" can directly be compared to the time required to
cover the same distance in free space. With the above pre-
scription, one should be able to measure the time of flight for
either electronic or photonic waves. In this paper we have
concentrated on the electromagnetic wave packet tunneling
and its time of flight.
Figure 2 shows the experimental setup used in the time-

domain measurements. A BWO is used to generate the mi-
crowave pulse and a mode converter !MC" changes the TM01

mode !an annular pattern" to a TE11 mode !a central-lobe
pattern", which is then radiated via a conical horn antenna
!CHA".
The diameter of the CHA is 15 cm, which by conservative

estimates places the antenna’s far field at approximately 114
cm for 9.68 GHz. Two directional couplers attached to a
series of attenuators and a HP 8470-B, low-barrier Schottky
diode detector !provided in pairs" were used to detect the
microwave pulse at two distinct points in the antenna’s ra-
diation intensity pattern. These two points will be referred to
as the ‘‘center’’ !at the center of the antenna’s pattern" and
the ‘‘side’’ !at the side of the antenna’s pattern". The signals
from the HP detectors are then routed to two fast Tektronix
SCD-5000 single channel oscilloscopes. Each Tektronix
scope has a 4.5-GHz bandwidth and was set to record 1024
points over a 50-ns window. This means that the time inter-
val between two adjacent points on the pulse trace was ap-
proximately 48.9 ps.
In order to reduce the scope trigger jitter as much as pos-

sible, a line from the Sinus-6 accelerator section of the BWO
was routed to a PSPL fast picosecond pulse generator, model
4500E. This pulse generator is capable of producing trigger-
ing pulses with very sharp raise times !a 10–90% rise time
of roughly 100 ps", which in turn is used to trigger both
Tektronix scopes. Such an effort reduces the uncertainty as-
sociated with the triggering jitter to approximately 20 ps.
The frequency of the microwave pulse is measured by het-
erodyning the signal against a known oscillator !not shown
in Fig. 2" #22$. Repeated measurements on the microwave
signal indicated that the pulse frequency content is centered
at 9.68 GHz with a 100-MHz bandwidth #full width at half
maximum !FWHM"$.
For our setup described above, a series of single shots

were fired in order to measure the delay between the ‘‘cen-
ter’’ and ‘‘side’’ paths. This delay is due to the fact that the
cable length, the attenuators and detectors, and the internal
response of the two scopes are not exactly identical. How-
ever, such a systematic and repeatable delay is readily mea-
surable and its effect is easily removed by electronically in-
troducing a delay or advancement for one of the two paths.
#For example, the trigger delay option of the SCD-5000 can
be used to introduce the appropriate delay such that the
peaks of the two traces !‘‘center’’ and ‘‘side’’" arrive at the
same time. Equally well, a data acquisition software such as
LABVIEW or a plotting package can be used to shift one of the
two traces by the measured delay such that their peaks arrive
at the same time.$ After synchronizing the two paths such
that the peaks of the ‘‘center’’ and the ‘‘side’’ pulses arrive
at the same time, a 1DPC with its band gap tuned to the main
frequency component of the incident pulse !9.68 GHz" is
inserted along the ‘‘center’’ path. The 1DPC used consisted
of five polycarbonate sheets of thickness 1.27 cm and an
index of 1.66 separated by regions of air of thickness 4.1 cm
and index of unity. The details describing the design of this
1DPC will be discussed elsewhere. The insertion of the
1DPC along the ‘‘center’’ path allows us to measure the
advancement or the delay of the tunneling pulse as compared
to the companion free-space pulse !‘‘side’’".
Figure 3!a" shows the synchronized ‘‘center’’ and ‘‘side’’

pulses, without the 1DPC present. In order not to crowd the

FIG. 1. Scheme used to define the ‘‘operational’’ time of flight.

FIG. 2. Time-domain experimental setup.
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figure, only every third experimental data point !the $ and %
signs" are shown. The solid curves are the locally weighted
least-square fit, used to obtain the best smooth curves
through the experimental data !#23$, pp. 246 and 247", and
they match the raw data !including those not shown here"
well.
An expanded view of Fig. 3!a" in the vicinity of the pulse

maxima is shown in Fig. 3!b". Also, on the right axes we
have plotted the percent relative difference between the ac-
tual raw experimental data and the least-square fit. From this
figure it is clear that the match between the raw data and the
fit is good to less than 2.5%. Since the fit is of similar quality
for the remaining figures presented in this paper, we display
only the fitted curves for clarity of presentation. As is evident
from this figure, the peaks of the ‘‘center’’ and the ‘‘side’’
pulses arrive at the same time. We note that the main reason
for the difference between the two pulses’ shapes is the fact
that they were sampled at two different points of the radia-

tion intensity pattern. Slight frequency response mismatches
among the components used along the two paths are also
contributing factors.
At this point, the 1DPC is inserted in the ‘‘center’’ path

while leaving the ‘‘side’’ path unchanged. Figure 4!a" shows
the result. This figure and its expanded view in the vicinity
of the pulse maxima #Fig. 4!b"$ indicate the pulse propagat-
ing along the ‘‘center’’ path, and tunneling through the
1DPC arrives sooner than the companion free-space ‘‘side’’
pulse. For the peak of the pulse, this shift to earlier time is
measured to be 440!20 ps. Although Figs. 3 and 4 display
the normalized !with respect to the maximum" wave packets,
it is important to note that due to the evanescent tunneling,
the ‘‘center’’ wave packet has been attenuated by a factor of
2.8.
The traditional view of pulse propagation through a re-

gion with high attenuation !regions of anomalous dispersion"
held that the extreme attenuation !coupled with the disper-
sion" would distort the signal to such an extent that the origi-

FIG. 3. Synchronized pulses propagating along ‘‘center’’ and
‘‘side’’ paths: !a" every third experimental raw data along with
the locally weighted least-squares fit is shown, !b" an expanded
view of !a" where the least-squares fit and the percent relative dif-
ference between the fit and the raw data is shown.

FIG. 4. The pulse propagating along the ‘‘center’’ path and
tunneling through the 1DPC, and the pulse propagating along the
‘‘side’’ path in free space: !a" the normalized wave packets, !b"
the expanded view of !a" in the vicinity of the pulses maxima.
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nally well defined wave packet and its peak would not be
recognizable upon emergence. For example, Landau and Lif-
shitz write, ‘‘When considerable absorption occurs, the
group velocity cannot be used, since in absorbing medium
wave packets are not propagated but rapidly ironed out’’
!#24$, p. 285". In a similar manner, Sommerfeld, citing Laue,
states, ‘‘. . . with anomalous dispersion, due to the strong
absorption which destroys the significance of a characteristic
wavelength after a short path length, one can no longer
sharply define the velocity of propagation of the energy’’
!#1$, p. 22". It is the same understanding which compelled
Brillouin to write, ‘‘. . . but if absorption also occurs, a #the
wave vector$ becomes complex or imaginary and the group
velocity ceases to have a clear physical meaning’’ !#25$, p.
75". !The expression inside of the brackets is ours." In light
of the above, it is important to emphasize the following two
points. First, for a sufficiently narrowband pulse centered in
a region of minimal frequency dispersion, it is possible to
propagate an evanescent mode through an optical barrier
such that, while the transmitted wave packet is reduced in
magnitude, it suffers negligible dispersion or distortion. Sec-
ond, if group velocity is a useful physical parameter in de-
scribing the wave packet propagation through the ‘‘center’’
path without the 1DPC present !i.e., pulse marked ‘‘center’’
in Fig. 3, which propagates through free space", and if upon
insertion of the 1DPC in the ‘‘center’’ path the emerging
tunneling wave packet envelope !pulse marked ‘‘Tunneling’’
in Fig. 4", though reduced in amplitude, closely resembles
the nontunneling wave packet, then the concept of group
velocity is still valid for the latter case.
Figure 5 demonstrates these two points. It shows the tun-

neling !the solid curve" and the free-space !the dashed curve"
pulses along the same ‘‘center’’ path. The tunneling pulse
was obtained with the 1DPC inserted in the ‘‘center’’ path,
whereas the free-space pulse was acquired without the pres-
ence of the PC for the same path. In order to make the
comparison easier, the free-space pulse was manually shifted

to earlier times to coincide with the tunneling pulse.
Measurements show that the FWHM of the free-space

wave packet is approximately 9.1 ns, while the FWHM of
the tunneling wave packet is 9.3 ns, indicating a 2.2% in-
crease. Considering such a small broadening, we have to
accept that if group velocity is a good parameter for the
free-space pulse, it also must be a good parameter for the
tunneling pulse.
The shift to earlier time displayed in Fig. 4 after synchro-

nizing the two paths can be calculated according to

't#
LPC
c "(g , !1"

where LPC is the physical length of the PC and (g is the time
associated with traversing the 1DPC, also known as group
delay. !Group delay is the angular frequency derivative of
the 1DPC transmission phase." Since the structural param-
eters for the 1DPC are known, the PC length and the group
delay !at 9.68 GHz" can be evaluated to be 22.75 cm and 320
ps, respectively #17,26$. Substituting these values in Eq. !1"
results in the calculated time shift ('t) of 438 ps, which is in
good agreement with the measured value of 440!20 ps. The
group velocity of the wave packet propagating through a
1DPC of length LPC is given by )g#LPC/(g and is related to
the time shift !'t"

)g#
LPC

!LPC /c ""'t . !2"

Equation !2" implies that for the measured 't#440!20 ps,
the microwave pulse group velocity traveling through the
1DPC is approximately (2.38!0.15)c . This agrees well with
the calculated group velocity of 2.37c .
Finally, let us consider the velocity by which the half

maximum of the signal propagates. This velocity is of some
historical importance since it was used by Sommerfeld and
Brillouin to define the ‘‘signal velocity’’ !#1$, p. 74". These
authors used this velocity, hereafter referred to as the Som-
merfeld signal velocity, as a velocity equal to the group ve-
locity away from the regions of anomalous dispersion, which
also remained subluminal within the region of anomalous
dispersion !#1$, p. 76". However, by their own admission
such a definition is rather arbitrary !#1$, p. 79". To directly
cite them, Brillouin writes, ‘‘In general the signal velocity
measured depends on the sensitivity of the detecting appara-
tus used. With a very sensitive detector, even the forerun-
ners, or certain parts of them, might be detected . . . But if
the sensitivity of the detector is restricted to a quarter or half
the final signal intensity, then an unambiguous definition of
the signal velocity can, in general be given’’ !#1$, p. 100". A
comparison of Figs. 3 and 4 shows that the half maximum
point of the pulse propagating along the ‘‘center’’ path and
tunneling through the 1DPC has shifted to earlier time by
303 ps, indicating that the Sommerfeld signal velocity is also
superluminal. In light of this fact, and other problems asso-
ciated with the definition of energy velocity in the case of an
inverted medium as discussed in Refs. #21,27–32$, the true
‘‘signal velocity’’ as it is to be used in connection with the
theory of special relativity must refer to the velocity by
which the front or Sommerfeld forerunner propagates. How-
ever, it must be pointed out that due to high frequency and
small amplitude of the forerunner, this new definition of

FIG. 5. A measure of the pulse broadening due to tunneling
through 1DPC. The two pulses have propagated along the same
path !‘‘center’’" in free space and through the 1DPC. The free-
space pulse is manually shifted to an earlier time to make the com-
parison clearer.
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‘‘signal velocity,’’ although necessitated by Einstein causal-
ity, is probably not a practical definition under all circum-
stances. The subject of the front or Sommerfeld forerunner is
discussed in the next section.

III. WHY EINSTEIN CAUSALITY IS NOT VIOLATED

A. Causal signals or signals with front

In this section a simple proof that no signal can travel
faster than c is given. Although parts of this proof can be
found elsewhere #21$ !#33$, pp. 315 and 316", in light of
recent objections to Einstein causality for evanescent modes
#19$ and previous concerns regarding the feasibility of gen-
erating a front and its relevance to ‘‘signal velocity’’ #18$,
we intend to provide a more complete and coherent descrip-
tion of the underlying physics and the mathematical formal-
isms.
Figure 6 shows an incident electromagnetic pulse travel-

ing in vacuum from left to right. At the time t#0, the pulse
reaches the boundary of a medium characterized by the index
of refraction n(*), given by

n!*"#c
k!*"

*
. !3"

This medium can be a dielectric slab, an undersized wave-
guide, a 1DPC, or any material or structure for which the
dispersion is described by n(*). For the sake of simplicity,
here we only consider the case of one-dimensional propaga-
tion. However, the results presented here can easily be ex-
tended to higher-dimensional situations, although in some
cases !for example, polarization effects or finite transverse
size limitations" this extension may require more rigorous

reasoning. For the pulse impinging on the boundary at nor-
mal incidence, the electric field at position x and time t is
given by !#2$, p. 336"

u!x ,t "#!
"+

$+ 2
1$n!*"

A!*"eik!*"x"i*t d*

#!
"+

$+

g!*"ei,!*" d* , !4"

where A(*) is the signal spectrum, given by

A!*"#
1
2- !

"+

$+

u!x#0,t "ei*t dt . !5"

We require that the signal have a well-defined front,

u!0,t "#0 for t&0,
!6"

u!0,t ".0 for t/0.

The above condition is a requirement for any ‘‘true sig-
nal.’’ In other words, for any physically realizable electro-
magnetic pulse, there must be a point in time prior to which
the amplitude of the field is identically zero. !Throughout
this work, the effect of noise is neglected. Clearly in the
presence of the noise, statistical considerations regarding
noise and its effect on the front must be included." For ex-
ample, in our experiment the times prior to the discharge of
the capacitor in the BWO result in zero amplitude for the
microwave pulse. In a similar manner, for Chiao’s single-
photon experiment #6$, one can always point to the times
prior to the process of photon downconversion as times for
which no tunneling photon exists. Stated differently, in con-
trast to the view set forth by the authors in Refs. #18,19$,
strictly time limited signals and not strictly frequency band
limited signals are the norm of the physical universe. !Even
the microwave background radiation, which has presumably
started with the Big Bang, is by definition a strictly time-
limited signal. Needless to say, this radiation was never uti-
lized in any of the experiments concerned with superluminal
group velocities." Perhaps the arbitrary convention of defin-
ing the frequency content of a given electromagnetic pulse in
terms of a pair of numbers !be it FWHM or any other" has
caused confusion in thinking that a ‘‘true signal’’ generated
at a given point in space and time cannot or should not have
frequency components outside the interval defined by the
aforementioned pair of numbers.
The fact that the value of the field is zero up to a given

time #Eq. !6"$, along with a few other reasonable assump-
tions !discussed in the following sections", is sufficient to
show that the value of the integral in Eq. !4" is identically
zero for t&t0 . In contrast to the opinion expressed by Nimtz
et al. that ‘‘there is no experimental condition known by
which such a well defined front could be generated,’’ Eq. !6"
is justified for any ‘‘true’’ as opposed to a mathematically
constructed signal. More importantly, the manner in which
the field does turn on has no effect on the result expressed
above. A signal can be turned on as slowly !a linear function
of time" or as quickly !exponentially with time" as possible,
and the value of the integral in Eq. !4" remains zero for all
times less than t0 .

FIG. 6. A pulse impinging upon a causal medium characterized
by index !or effective index" n(*).
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Before proving the above statement, in light of the con-
troversies surrounding superluminal velocities it is important
to discuss objections raised in Refs. #18,19$. In describing
their frequency domain measurements, Nimtz et al. write,
‘‘The Fourier transform F(t)#0)1

)2d) A())T())e2-i)t yields
the time response of the measured regions. As this signal is
frequency band limited, it extends from "+ to $+ in the
time domain. Since there is no defined front, such a signal
cannot be used to check Einstein causality.’’ Aside from the
authors’ unphysical assumption that such a ‘‘signal’’ has ex-
isted for all time in the past and will continue to exist for all
time to come, their frequency domain measurements suffer
from both experimental and interpretation errors. The correct
frequency domain approach, particularly for the case of a
1DPC as the optical barrier, is discussed in Ref. #17$. In the
Nimtz et al. experiments the fact that one is able to set a
frequency sweep range !strictly frequency band limited to
)1")2) with a network analyzer does not mean that an ac-
tual signal extending in time from "+ to $+ has been gen-
erated. The NA and its synthesized source measure a portion
of the frequency domain transmission coefficient, which are
then used in a Fourier transform by Nimtz et al. and assumed
to describe the complete time-domain results. Moreover, this
approach requires assuming an incident pulse #A()), a
Gaussian or Kaiser-Bessel function$ which in reality has not
been generated. As was discussed above, man-made signals
must begin at a point in space and time and hence by defi-
nition are strictly time-limited.
The author in Ref. #19$ also claims, ‘‘In this letter I shall

show that frequency band limitation is a fundamental prop-
erty of signals and that such signals containing only evanes-
cent modes can violate Einstein causality.’’ He then argues
that, ‘‘In theory switching on a signal generates infinitely
high frequencies . . . However, signals with an infinite spec-
trum are impossible, since Planck has shown in 1900 that the
minimum energy of a frequency component is 1* . . . Since
a signal has a finite energy !may be as small as of the order
of 100 photons only", it follows that its spectrum has also to
be finite.’’
In view of the above, it is important to note that the con-

cept of infinity is a mathematical construct that physical re-
ality can only approximate. For example, in all of the super-
luminal experiments in the microwave regime, one can
safely say that frequencies in the range of tens or hundreds of
GHz are a good approximation to the idea of infinitely high
frequencies. #For the wave packet used in our experiment
!centered at 9.68 GHz with a FWHM of 100 MHz", one can
easily say that frequency components of ten or tens of GHz
are indeed high frequencies which can be employed in the
formation of the signal’s front.$ More precisely, neglecting
frequency components higher than these results in quantifi-
able errors as small as desired. More importantly, in the
theory of signal processing and communication it is rather a
well known fact that the energy of a signal #u(t)$ is given in
terms of its spectral density #U())$ according to !#34$, p. 38"

E#!
"+

$+

U!)"U*!)"d)#!
"+

$+

"U!)""2d) . !7"

Clearly, the function U()) does not have to be strictly fre-
quency bandwidth limited for the above integral to remain
finite.
Furthermore, in regard to the ‘‘minimum energy of a fre-

quency component’’ alluded to by the author of Ref. #19$,
the following two points need consideration. First, it is uni-
versally accepted that a genuinely monochromatic plane
wave !a frequency domain 2 function" with energy 1* is
never physically realizable, and even the most narrow wave
packet must contain some frequency spread. Second, with
respect to the citation of the original work by Planck, it
should suffice to say that the spectral energy density !energy
per unit bandwidth per unit volume" is the product of the
average energy per mode and the modal density. For ex-
ample, in the case of blackbody radiation, this is given by
!#35$, p. 452"

3!)"#
8-h)3

c3
1

exp!h)/kBT ""1 , !8"

where T, h, and kB are the temperature, Planck constant, and
Boltzmann’s constant, respectively. It is a matter of simple
exercise to show that the integration of Eq. !8" for all fre-
quencies and over a physical volume yields a finite energy.
Upon returning to Eq. !4", in order to show that the value

of the integral is identically zero for all times less than t0
#x/c , we need one more requirement. Stated simply, this
requirement reads as follows: we shall not expect to measure
a response from the medium characterized by n(*), in the
absence of a stimulus. #The reader may note that at this point
nothing has been said with regard to the maximum speed by
which a stimulus can propagate. The limitation on the stimuli
propagation speed is set by special relativity and will be
confirmed as the result of the proof that the value of the
integral in Eq. !4" is identically zero for times less than x/c .$
This is merely the description of a causal medium for which
the effect cannot proceed the cause. This condition is math-
ematically expressed as !#2$, p. 330"

4!*"

40
"1#!

0

$+

G!("ei*( d( , !9"

with G(()#0 for (&0. G(() is what is commonly referred
to as the susceptibility kernel and is given by

G!("#
1
2- !

"+

$+

#4!*"/40"1$e"i*( d* . !10"

B. Titchmarsh theorem

Using the Titchmarsh theorem !#36$, p. 426", it is straight-
forward to show that u(x ,t) is identically zero for t&t0
#x/c . This theorem states that any one of the concepts of
causality, analyticity, or the Hilbert transform implies the
other two. In our particular example, the requirement of a
signal with a front #also known as a causal signal, Eq. !6"$
implies that A(*) from Eq. !5" must be analytical in the
upper half plane !UHP" of the complex * plane. Similarly,
the requirement of the causal medium #G(()#0 for (&0$
implies that n(*) and consequently 2A(*)/#1$n(*)$ must
also be analytical on the UHP. Now, consider the phase term
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in Eq. !4" away from the real * axis (*→z#5$i6
#"*"ei7) and in the limit of "*"→+ . This is given by

exp! i,"#exp# i 5
c !x"ct "$exp#"

6

c !x"ct "$ as "*"→+ ,

!11"

where n(*)→1 as "*"→+ !#2$, p. 333".
If x"ct'0, then, in the UHP !i.e., 6'0) we have

exp! i,"→0 as "*"→+ . !12"

At this point we use contour integration to evaluate the
integral in Eq. !4". We can then write

u!x ,t "#!
"+

$+

g!*"ei,!*" d*

# % g!z "ei,!z " dz"lim !
0

-
g! "*"ei7"

%ei,„"*",exp!7"…i"*"ei7d7 ,

"*"→+ , !13"

where the counterclockwise semicircle contour is closed in
the UHP. From the results in Eq. !12", the last integral in Eq.
!13" vanishes as "*"→+ !this is Jordan’s lemma". Further-
more, since we have seen that g(*)ei,(*) is analytical in the
UHP, from the Cauchy-Goursat theorem the closed contour
integral is also zero, therefore u(x ,t) is zero for x"ct'0.
This completes the proof that no signal can travel faster than
c; the result is summarized as follows:

u!x ,t "#!
"+

$+ 2
1$n!*"

A!*"eik!*"x"i*t d*

#!
"+

$+

g!*"ei,!*" d*#0

for x"ct'08t0't8V'c !14"

with t0#x/c and V#x/t .

IV. SOMMERFELD FORERUNNER

A. Stationary phase approximation

In the preceding section we showed that at the position x,
for times less than the time for light in vacuum to travel the
distance x !i.e., t0), there will be no field. For times larger
than t0 , the contour must be closed in the lower-half-plane
LHP in order for the contribution from the infinite semicircle
to be vanishingly small. Now a question can be asked: Is
there some general behavior of the earliest parts of the pulse
!the Sommerfeld forerunner" which can be ascertained with-
out the need for a specific model of the index? The answer to
this question is yes. In other words, a qualitative description
of the Sommerfeld precursor’s field can be obtain which
would be applicable to any dispersive system such as a
Lorentzian medium, a 1DPC, or an undersized waveguide,
and so on. Thus far in the literature, whenever such a prob-
lem has been discussed, a Lorentzian model of the index has

been chosen #1$ !#33$, pp. 313–326". We show here that the
results derived for a Lorentzian model can be generally ap-
plied to any spatially or temporally dispersive system with
only a change in the definition of a constant.
Sommerfeld and his student Brillouin used the steepest-

descent method !SDM" for a Lorentzian dispersion with a
sinusoidally modulated step-function input, to calculate the
first !Sommerfeld" and second !Brillouin" precursors !#1$, pp.
23–83". Here we apply the less rigorous yet simpler station-
ary phase method !SPM". A comparison between the two
methods is provided by Brillouin !#1$, pp. 81–83". However,
in the case of a purely real index, the SPM and SDM are
equivalent, and fortunately in the limit of *→+ !the situa-
tion relevant to the Sommerfeld precursor", any index be-
haves as purely real to within 1/*2.
The stationary phase condition !SPC" 9,/9*#0 can be

used to write

n$*
dn!*"

d*
#
ct
x #c

dk
d*

#
c
)g

#
t
t0

for t/t0 , !15"

where Eq. !3" was used, and )g is the group velocity ()g
#d*/dk). Equation !15" provides us with the locations of
the stationary points at different times. Using Eq. !15", it is
easy to show that the earliest contributions to the integral in
Eq. !4" come from the values of the index at large frequen-
cies (*→+). To see this, let us evaluate the left-hand side
of Eq. !15" for the value of the index at *→+ . We have

n!*→+"$*
dn!*→+"

d*
#1$0#1. !16"

However, Eq. !16" is also equal to t/t0 , which implies that
the first intersection of the horizontal line t/t0 with n
$*dn/d* occurs for t#t0 . But, this is merely the onset of
pulse propagation.

B. Forerunner frequency of oscillations

In the preceding section we showed that for the time equal
to t0 the stationary point is at *#+ . Now, let us evaluate the
stationary phase points for times immediately after t0 . Using
integration by parts and neglecting terms of order 1/*3 and
higher, it can be seen that the index of refraction in the limit
of large frequencies is purely real and given by #26, !#2$, p.
333"

n!*":1"
G!!0 "

2*2 , !17"

where the prime denotes the derivative of the susceptibility
kernel with respect to time. Substituting Eq. !17" in Eq. !15"
and solving for *#*s results in

*s#!G!!0 "& #2' tt0"1 ( $
1/2

. !18"

For Lorentzian dispersion, G!(0) is equal to the square of
the plasma frequency !#2$, p. 331", so that Eq. !18" can be
rewritten as
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*s#*p& #2' tt0"1 ( $
1/2

. !19"

Our Eq. !19" is identical to the expression obtained by Som-
merfeld !#1$, p. 54" for the Lorentzian medium. Equation
!18" or equivalently Eq. !19" imply that at a given observa-
tion point, for times immediately after t0 , the points of the
stationary phase !Sommerfeld forerunners" only depend on
the gross properties of the medium #e.g., *p or !G!(0)$.

C. Forerunner functional form

In order to calculate the functional form of the Sommer-
feld forerunner, the input signal must be known. Following
Jackson’s !#33$, p. 314" consideration of a Lorentzian me-
dium, we choose to model the earliest parts of the input
signal by a polynomial of order m; hence

u!0,t "#
atm

m! ↔A!*"#
a
2- ' i* ( m$1

, !20"

where a is a constant and m is an integer. Equation !20" can
be used to emulate the earliest parts of a variety of input
functions. By increasing the order of the polynomial, input
signals with increasingly sharper rise times can be modeled.
Once again, let us use contour integration in order to

evaluate the integral in Eq. !4". For times greater than t0 , the
contour must be closed in the LHP (6&0), and in a manner
similar to the previous discussion #Eq. !11"$ the contributions
from the infinite semicircle tend to zero for x"ct&0. There-
fore, the value of the field at position x and time t is given by

u!x ,t "#!
"+

$+

g!*"ei,!*" d*

#" % g!z "ei,!z " dz

for x"ct&08t0&t8)&c . !21"

Now, let us substitute Eq. !20" in Eq. !21" and replace the
index in 2/#1$n(*)$ with unity and the index in ,!*" with
n(*):1"G!(0)/(2*2), where *→z#5$i6#"*"ei7.
These two separate approximations, one for the amplitude
and the other for the phase, are similar to the Fresnel ap-
proximation in diffraction theory where higher-order terms
in the expansion of the phase are retained in order not to
generate errors much greater than 2- radians !#37$, pp. 58
and 59". After some mathematical manipulation, we have

u!x ,t ":a' t"t0
; ( m/2Jm#2!;! t"t0"$ for t't0 . !22"

where

;#
G!!0 "

2c x#
G!!0 "t0
2 , !23"

and Jm is the Bessel function of the first kind of order m. As
before, in the case of Lorentzian dispersion, G!(0) is re-
placed with the square of the plasma frequency (*p

2). Equa-
tion !22" for m#1 is identical to the expression obtained by
Sommerfeld !#1$, p. 41". Equation !22" implies that for input
signals with sharper rise times !larger m", the order of the
Bessel function will increase and the forerunner amplitude
will decrease.

V. CONCLUSIONS

In this paper we have described an experiment with single
microwave pulses tuned to the band gap of a 1DPC. It is
observed that the peak of these tunneling wave packets ar-
rives 440!20 ps sooner than the accompanying wave packet
traversing the same distance in free space. This implies that
the wave packet has propagated through the 1DPC 2.38
!0.15 times faster than the speed of light in a vacuum. De-
spite this abnormal behavior, there is no violation of Einstein
causality since the Sommerfeld forerunner !also referred to
as the front" remains exactly luminal. In response to objec-
tions raised by some authors, a proof that no detection of a
signal at the point x is possible for tunes less than x/c is
provided, and the universality of the strictly time limited
signal !signals with fronts" is discussed. Since propagation of
the Sommerfeld forerunner is ultimately associated with the
propagation of information, the frequency of oscillation and
the functional form of these fields for any causal medium are
presented.
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